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The three-dimensional structure and decay of a dipolar vortex in a linearly stratified
fluid is investigated experimentally using a high-resolution three-dimensional scanning
correlation image velocimetry system (SCIV). Comparisons with simple theoretical
and numerical models are made for late times in the low-Froude-number regime.
The relatively well-known stratified dipole, most of the time assumed to be quasi-
two-dimensional, is revealed to have a complex three-dimensional vortex topology
arising from its self-induced propagation. As the buoyancy scale u/N approaches
zero the dynamics of such a structure are dominated by the horizontal velocity field,
whereas the diffusion is mainly vertical. The evolution is then governed by an effective
Reynolds number, Reeff, based on vertical diffusion and horizontal advection. At early
times this effective Reynolds number is large, horizontal advection terms dominate
and a decrease of aspect ratio of the structure is observed until Reeff reaches a
critical value Rec

eff ∼ O(1), independent of the initial condition and associated with
a horizontal advection–vertical diffusion balance. Thereafter the evolution becomes
purely diffusive with decay time Rec

eff.

1. Introduction
One hypothesis for the approach to the final state of decaying stratified turbulence

characterizes it as a field of quasi-two-dimensional vortices. A common feature
observed among these vortices is the dipolar vortex, which consists of two closely
spaced patches of oppositely signed vorticity. Such vortices are frequently observed in
both the ocean and atmosphere (Fedorov & Ginsburg 1989), where they are believed
to play an important role in transport and mixing, over a wide range of scales. This
relevance to geophysical flow systems is largely responsible for the extensive studies
of dipolar vortex dynamics performed over the last few decades. Though associated
with a characteristic two-dimensional signature, these dipoles, like all real vortices,
are inherently three-dimensional.

The two-dimensional counterparts of such structures have been investigated in
various numerical and theoretical studies (Swaters 1988; Nielsen & Rasmussen
1997; van Geffen & van Heijst 1998). In the laboratory, the emergence of quasi-
two-dimensional dipolar structures, their stability and their dynamical properties
have been studied in several different types of experiments: Couder & Basdevant
(1986) generated dipoles in a thin soap film, while Nguyen Duc & Sommeria (1988)
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used magnetohydrodynamics to two-dimensionalize the flow. Experimental studies
have also been performed in plasmas (Huld et al. 1991) and strong rotation has
also been used to confine the dimensionality of the flow (Hopfinger, Browand &
Gagne 1982). Sous, Bonneton & Sommeria (2004) have recently generated quasi-
two-dimensional dipoles through confinement in shallow water layers. Experiments
in stratified fluids show similarity to two-dimensional vortex dynamics (Voropayev,
Afanasyev & Filippov 1991; Flór & van Heijst 1994) but the flows behave in a
much more dissipative way. Stratification alone does not two-dimensionalize the
flow; it inhibit vertical displacements, producing – to first order – horizontal flow.
Nevertheless, the Coherent structures emerging in such flows are usually described
well by two-dimensional models and in many of the earlier studies the dipolar vortex
was considered and described as a purely two-dimensional structure.

In stratified fluids these low-aspect-ratio vortices can emerge from an initially
turbulent flow (Lin & Pao 1979) but the tendency for initially columnar vortices to
decorrelate vertically, forming layers (Fincham 1994; Billant, Chomaz & Huerre 2000;
Billant & Chomaz 2000), demonstrates the inherently three-dimensional nature of
strongly stratified flows. Work by Fincham, Maxworthy & Spedding (1996); Spedding,
Browand & Fincham (1996); Bonnier (1999); Bonnier, Eiff & Bonneton (2000);
Beckers et al. (2001); Beckers, Clercx & van Heijst (2002) has shed much light on the
three-dimensional structure and dynamics of these pancake-like vortices. The vertical
growth of these vortices has been studied in sphere wakes (Chomaz et al. 1993;
Spedding 2002) dipoles (Flór, van Heijst & Delfos 1995) and box filling turbulence
(Fincham et al. 1996; Praud, Fincham & Sommeria 2005). Voropayev et al. (1991),
Bonnier et al. (2000) and Beckers et al. (2002) all measured density profiles through
these vortices, while the latter authors developed a three-dimensional model. Gourlay
et al. (2001) performed direct numerical simulations of stratified wake flows, allowing
detailed examination of the vortex topology.

The present study (an initial version of which is presented in Praud & Fincham
2000) deals with the viscous decay of a three-dimensional dipolar vortex in a stably
stratified fluid. Unlike previous studies, the combined effects of vertical diffusion and
horizontal advection are considered. The dipole is generated by a short horizontal
injection of fluid, i.e. by introduction of a horizontal impulse. The focus is on the three-
dimensional structure and evolution of the dipolar vortex. The novel measurement
technique used permits volumetric resolution of the three components of vorticity
in time and allows the direct assimilation of the experimental data into a simple
three-dimensional numerical model, which is shown to accurately describe the late
time evolution of the coherent structure. A profound difference with the purely two-
dimensional description will be shown; this arises from the vertical variability of
the dipole’s self-propagation velocity, which tends to deform the vortical structure,
decorrelating the different levels. In contrast to the planar models, the kinetic energy
is mainly dissipated by these strong vertical gradients. A balance argument between
horizontal advection is used to define two evolutionary regimes. At early times the
advection dominates and a decreases of the aspect ratio is observed while for late
times the evolution is purely diffusive.

The experimental arrangement is described in § 2 which is followed in § 3 by the pre-
sentation of the scaling analysis used to build the model. Section 4 presents ex-
perimental observations and a description of the structure which is compared with
numerical results from the model in § 5, where a model for a three-dimensional Lamb–
Chaplygin dipole is introduced as an initial condition for higher Reynolds number sim-
ulations. Finally, results concerning the advective–diffusive balance are presented in § 6.
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Figure 1. Sketch of experimental set-up: 1, tank filled with a linearly stratified salt solution;
2, horizontal injection nozzle; 3, injected turbulent region; 4, pressurized water supply system;
5, compressed air bottle; 6, computer controlled butterfly valve; 7, manometer; 8, 768 × 484
pixel digital camera; 9, horizontal, scanning laser sheet.

2. Experimental set-up and procedure
2.1. Experimental set-up

The experiments were performed in the 13 m diameter, 110 cm deep Coriolis platform
in Grenoble, France. The tank was linearly stratified with common salt by diluting
an ultrasonically maintained constant-head filling flow with a prescribed flux of brine
provided by a computer controlled volumetric pump. The Brunt–Väisälä frequency of
the stable stratification was 0.3 rad s−1 and was kept constant for all the experiments
discussed here. To generate the dipolar vortices the turbulent injection method of
Flór & van Heijst (1994) and Voropayev, Afanasyev & van Heijst (1995) was
employed. An isolated turbulent region was created (at t = 0 s) by a horizontal pulsed
injection of a small volume of fluid (0.2 < V < 1.5 l) through a relatively thin nozzle
of diameter d = 1.7 cm, during a short period of time (1< t < 8 s). This turbulent
patch subsequently collapses under gravity, forming a thin pancake-like region of
horizontal motion that reorganizes into a dipolar structure. The injection nozzle (that
was bevelled on the outside to a fine edge) was positioned at the half-depth and
particular care was taken to ensure that the density of the injected fluid exactly
matched the density of the ambient fluid at the level of the injection. The slightly
pressurized injection process was controlled by a stepper motor, that opened and
closed a simple butterfly valve, allowing precise control of the injection parameters
(i.e. volume and time of injection). The Reynolds number based on the injection
parameters Rei = Uid/ν (Ui the jet exit velocity and ν the kinematic viscosity) was
larger than 10 000 ensuring a fully turbulent jet flow at the exit of the tube. A high-
resolution scanning digital particle imaging velocimetry system was used to provide
components and their spacial derivatives along x, y and z of the horizontal velocity
in a volume. Stepper motors drove a profiling conductivity probe used to measure
density profiles. Figure 1 shows a diagram of the experimental set-up.
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2.2. PIV measurement in a volume

In these experiments, the correlation imaging velocimetry (CIV) technique of
Fincham & Spedding(1997) was used to determine quantitatively the velocity field in
a relatively large number of horizontal planes. This multi-planar technique is referred
to as scanning correlation imaging velocimetry (SCIV) (Fincham 1998). The fluid was
seeded with 600 micron diameter polystyrene beads, that were carefully prepared by
a process of cooking and successive density separations to have a flat distribution of
densities matching that of the background stratification. This process ensured that
there were equal number densities of particles at each depth. A photographic sur-
factant (Ilfotol) was added to the working fluid in small concentrations to prevent the
polystyrene beads from agglomerating. Coherent light originating from an 8 W argon
laser was directed into an optical fibre, the other end of which was attached to an
opticals assembly that directed the light onto a small oscillating mirror, creating a
vertical light sheet. The entire optical assembly was fixed to a high-speed, horizontally
displacing, computer controlled linear bearing traverse. The horizontally moving
vertical light sheet passes through a thin glass plate, held parallel to and just touching
the surface of the water, above a submerged 45◦ mirror. In this way, horizontal motion
of the vertical light sheet above the water translated directly into vertical motion of a
horizontal light sheet within the fluid. Due to the refractive index variation with depth,
an initially horizontal beam of light will tend to curve downwards parabolically. In
order to minimize this effect, only relatively weak stratifications were used and the
angle of the horizontal light sheet was inclined upwards a few degrees, until the
summit of its parabolic trajectory corresponded to the centre of the measurement
area. This approach produced maximum deviations from horizontality that occurred
at the edges of the images and were limited to about 5 mm, values close to the actual
light-sheet thickness.

The volume scanning process proceeded as follows, an initial scan through all
depths was made with continuous image acquisition to memory; the light sheet was
then quickly returned to the starting position; after an appropriate time interval, the
scan process was repeated to acquire the second image in each pair. The images
were acquired by a 768 × 484 pixels 8-bit Pulnix 9701 interline transfer CCD camera
operating at 30 frames per second in digital output mode, the camera being placed
4m above the water surface. Each slice (corresponding to a pair of image) is treated
as described in Fincham & Spedding (1997) and Fincham & Delerce (2000). Typical
measurement conditions produce 80 × 60 × 50 independent vectors in a volume of
250 × 250 × 50 cm3. A combination of numerical simulations of the scanning technique
and actual hardware tests using real particles ‘frozen’ inside a clear resin block, along
with tests on stagnant fluid, showed that under optimum conditions, the measured
mean r.m.s. error in velocity is less than 2%.

3. Theoretical and numerical models
3.1. Scaling analysis and governing equations

The low-Froude-number theory was first developed by Riley, Metcalfe & Weissman
(1981) and Lilly (1983). Riley et al. (1981) showed that for a buoyancy-dominated,
initially isotropic turbulent flow, flow fields – to lowest order – can be decomposed
into vertical motions induced by internal gravity waves and quasi-horizontal turbulent
motions (stratified turbulence). We will follow their scaling analysis closely.

The equations of motion for an incompressible fluid are first written in the
Boussinesq approximation. Molecular diffusion of salt is very slow and its effect
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is assumed to be negligible (the Schmidt number for salt water is very large compare
to unity: Sc ∼ 700)

The horizontal velocity is scaled with a characteristic horizontal velocity scale U .
The horizontal and vertical directions are scaled respectively with a horizontal and
vertical length scale Lh and σ . The time is scaled with the advective time scale
Lh/U . Horizontal pressure gradients are assumed to be of the same order as the
horizontal accelerations implying that the scale for the pressure is ρ̄U 2 where ρ̄

is a constant reference density. Since the vertical motions are small, the vertical
momentum equation describes to good approximation a hydrostatic balance and the
density perturbation is scaled as ρ ∼ ρ̄U 2/(gσ ) with g = (0, 0, −g) the gravity vector.
The vertical velocity uz is scaled as U 3/(σLhN

2).
The relative importance of inertial forces in comparison to buoyancy forces is

measured by the horizontal Froude number Frh = U/LhN , which is the ratio of
inertial to buoyancy time scales where, N =

√
−(g/ρ̄)∂ρ0/∂z is the Brunt–Väisälä

frequency and ρ0(z) the linear mean density profile. The vertical Froude number,
Frv = U/σN , compares the vertical scale, σ , to the buoyancy scale, Lb =U/N and
is related to the horizontal Froude number through the relation Frh = αFrv where
α = σ/Lh is the aspect ratio.

In the limit Frv → 0, and keeping the same notation for the dimensionless variables
the lowest-order equations become

∂uh

∂t
+ uh · ∇huh = −∇hp +

1

Re

(
∇2

huh +
1

α2

∂2uh

∂z2

)
, (3.1)

∇h · uh = 0, (3.2)

0 = −∂p

∂z
− ρ, (3.3)

∂ρ

∂t
+ uh · ∇hρ − uz = 0, (3.4)

where uh is the horizontal velocity, uz the vertical velocity and ∇h the gradient
operator working in the horizontal directions. The detailed low-Froude-number
scaling argument can be found as originally derived in Riley et al. (1981) and re-
viewed in Riley & Lelong (2000). A more formal derivation can be found in Embid &
Majda (1998).

This scaling analysis requires Frv to be small; this can be tested in our experiments.
Just after the collapse of the three dimensional turbulent patch, during the dipole
formation, the vertical Froude number has a value of O(1). However, as the dipole
decays, Frv rapidly decreases to values smaller than the initial value satisfying
Frv � 1. Previous experimental studies (Flór & van Heijst 1994; Flór et al. 1995;
Bonnier et al. 2000; Billant et al. 2000; Fincham et al. 1996; Godeferd & Staquet
2003; Praud et al. 2005), also show that the vertical Froude number is initially order
one but rapidly decreases to reach much smaller values.

The lowest order equation for the vertical vorticity ωz,

∂ωz

∂t
+ uh · ∇hωz =

1

Re

(
∇2

hωz +
1

α2

∂2ωz

∂z2

)
, (3.5)

obtained by taking the curl of (3.1), demonstrates that the vertical vorticity satisfies
the two-dimensional Navier–Stokes equations and is completely decoupled from the
vertical motion. Nevertheless, ωz and the horizontal velocity field may have vertical
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structure. Moreover, the lowest order vertical vorticity equation has no Froude number
dependence.

The pressure field is obtained by taking the horizontal divergence of (3.1), as a
solution of the following cyclostrophic balance equation:

∇2
hp = −∇h · (uh · ∇huh) . (3.6)

The density perturbation, ρ, is then obtained from (3.3). The vertical velocity, uz,
is finally determined from (3.4), which implies that the fluid particles follow the
isopycnal surfaces.

3.2. Numerical investigation

In order to investigate the temporal evolution of the dipolar vortex we numerically
integrate (3.5). The nonlinear (advective) term is calculated explicitly by using the
two-dimensional composite corrected Lax–Friedrichs scheme described in Liska &
Wendroff (1998). The viscous term is treated implicitly using the usual Crank–
Nicolson technique. The time-advancement of the numerical scheme is thus second-
order accurate in time.

Given the vertical vorticity field, ωn
z (x, y, z) at time step n, the streamfunction is

computed, in physical space, at each level z, from the Poisson equation ∇2
hψ

n = −ωn
z .

In order to avoid spurious effects resulting from the boundary conditions, the domain
of integration is enlarged four times by setting ωz = 0 in the outer potential region.
The horizontal velocity field, un

h(x, y, z), is obtained by calculating the horizontal
derivatives of ψn at each level. This ensures that the incompressibility condition
for the leading order of the horizontal velocity field (3.2) is respected. The vertical
vorticity field, advected by the horizontal velocity field (vn

x , v
n
y ), is then computed for

the new time-step n + 1. The boundary conditions are such that ωz must vanish at
the boundaries.

Two different types of numerical simulations were done: one initialized with a
three-dimensional model of the dipolar structure and the other initialized with the
experimentally measured vertical vorticity field obtained directly from the volumetric
SCIV data. All the numerical simulations were run in a domain of horizontal dimen-
sion 8Lh and vertical dimension 2Lh. In the simulations initialized with the dipole
model, the horizontal direction is discretized with 201 gridpoints and the vertical
direction with 101 gridpoints, while in the simulations initialized with laboratory data
the horizontal and vertical directions are both discretized with 128 gridpoints.

The density field in obtained by differentiating in z the pressure field obtained from
the physical space solution of the poisson equation (3.6), in a domain of integration
enlarged four times by setting uh = 0 in the outer potential region.

4. Laboratory observations
4.1. Self-induced deformation

After the pulsed injection, an isolated turbulent region forms, which quickly collapses
under gravity to form a thin quasi-horizontal pancake-like turbulent patch. This
patch subsequently reorganizes to form a dipolar structure. During the collapse of
the three-dimensional turbulent region, internal waves are generated, which radiate
away from the structure and are quickly dissipated, in particular, after been reflected
at the walls of the large tank. These waves are believed to play no significant role
in the further evolution of the vortex structure. The collapse and formation of the
stratified dipolar structure is detailed in the study of Flór & van Heijst (1994).
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Figure 2. Isosurface of ωz inside the core for |ωz| = 15% of the maximum value of ωz at
t =630, 1150, 1780 and 3140 s after the injection. Positive ωz is in dark grey and negative
is in light grey. The dipole is propagating to the left. The size of the domain represented
is 200 × 160 × 30 cm and the vertical axis has been stretched by factor 4 to enhance the
visualization.

Once formed, the dipolar vortex structure translates quasi-steadily along a straight
trajectory (if symmetric) away from the injector. The Reynolds number based on
the injection parameters, Rei , has a typical value of 15 000. Soon after the dipole
formation is completed, the Reynolds number based on the horizontal characteristics
of the structure, Re= ULh/ν, is typically O(1000). This value decreases rapidly as the
dipole decays during the course of the experiment.

The three-dimensional structure of the dipole is examined in figure 2. Although the
motion is quasi-horizontal, the vortical structure is definitely not two dimensional.
The vertical vorticity is bent backward behind the dipole due to the vertical variability
in the propagation speed, which must go to zero far above and below the structure
and is maximum at the mid-plane. This self-advective deformation gives each half of
the dipole a ‘banana’-like appearance. This three dimensional structure of the dipole
was previously observed in the experiments of Fincham (1998, 2000). Full three-
dimensional numerical simulations of the interaction of two shielded monopoles in a
stratified fluid also exhibit this characteristic banana shape (Beckers et al. 2002).

4.2. Vertical structure and aspect ratio

The vertical structure of the dipole is examined by considering the vertical distribution
of the vertical vorticity along the banana shape. The maximum value of ωz following
this deformed vortex tube, ωz max , is plotted versus the vertical coordinate in figure 3.
The vertical distribution of ωz max is approximated well by a Gaussian of the form
exp(−(z − z0)

2/σ 2), where z0 is the altitude of the mid-plane and σ is a measure of
the dipole thickness. σ obtained in this way is similar to a σ obtained by simply
fitting ωz in z, as the advection-induced deformation is minimum at the centreplane
where ωz is maximum. Such Gaussian distributions seems to be general properties
of isolated structures in stratified fluids and this measure of σ is used throughout
the study. Similar distributions were indeed observed for decaying dipolar vortices
(Flór & van Heijst 1994; Flór et al. 1995) and decaying monopoles (Beckers et al.
2001).
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Figure 3. Vertical distribution of ωz max following the deformed tube of vertical vorticity at:
�, t = 360 s; �, t = 620 s; �, t = 1350 s after injection. The measured profiles are fitted with
Gaussian curves. V =0.54 l, δt = 3 s.
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Figure 4. Evolution of the aspect ratio, α = σ/Lh, for three dipoles: �, V = 0.60 l; δt = 3 s;
�, V =0.68 l, δt = 4 s; �, V = 0.54 l, δt = 3 s.

The evolution of the aspect ratio α = σ/Lh, where Lh is the distance between the
vortex poles, is illustrated in figure 4. Two regimes can be defined. For early times
a decrease of the aspect ratio is observed. This regime corresponds to an advective
regime in which horizontal advection dominates, deforming the dipole, bending the
vertical vorticity horizontally and thinning the dipole as fluid is stripped off in the
high-shear regions above and below, while the horizontal size of the structure grows
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Figure 5. Contribution of the three components (ωx, ωy, ωz) of vorticity to the total
enstrophy Ω . V = 0.54 l, δt = 3 s.

by viscous entrainment of the ambient fluid. For later times, a second regime where
α increases by vertical diffusion is observed. In this regime, the rate of the vertical
expansion by diffusion is larger than the horizontal expansion rate. As we shall see
in § 6, the transition time between the two regimes is govern by an effective Reynolds
number, which measures the relative importance of the horizontal inertial forces to
the vertical viscous diffusion.

This second regime, where the thickness grows much more rapidly that the
horizontal scale corresponds to the regime observed and describe by Flór & van
Heijst (1994) and Flór et al. (1995). The values of the aspect ratio of the dipole are
consistent with the observations of pancake eddies in stratified flows. For example,
in the wake of a sphere, Bonnier et al. (2000) measured α ∼ 0.4 and Spedding (2002)
measured α ∼ 0.3−0.6; Fincham et al. (1996) measured α ∼ 0.3 for late-time stratified
turbulence, and for the vortex dipole, Voropayev et al. (1995) find α ∼ 0.4, whereas
Flór et al. (1995) find α ∼ 0.2–0.4. The differences in the observed values of α can
be attributed to a number of things, including errors in the different measurement
techniques used and the stage of development that the vortex is in. The actual
definition of the length scales is not always the same: some are based on fits to
vorticity profiles, others on fits of velocity or scalar fields, and mutipolar vortices do
not always have easily definable horizontal scales. Most importantly, it is the initial
conditions responsible for the generation of the vortices and the ambient conditions
of the environment they develop in that determines α.

4.3. Vortex filaments

This low-aspect-ratio characteristic of late-time vortical structures in stratified fluids
indicates a strong anisotropy of the flow and, thus, a relatively large difference in
intensity between the horizontal and vertical velocity gradients. As it can be seen in
figure 5, the horizontal vorticity is responsible for about 90% of the total enstrophy,
with ωy , here composed entirely of ∂u/∂z, contributing more than 50%.

The importance of the vertical gradients is illustrated well in figure 6 which displays
the topology of the vortex lines within the dipole core (see Fincham et al. 1996;
Fincham 1998, 2000). Because of up–down symmetry about the horizontal mid-plane,
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Figure 6. Vortex filaments originating from a vertical plane traversing the dipole. The
vertical axis has been stretched four times.

the vortex lines must be directed vertically on the central horizontal plane where the
vertical vorticity has its maximum value. The lines clearly exhibit a tendency to form
closed vortex loops and connect the two poles of the dipole through regions of strong
horizontal vorticity (it should be noted that the vortex filaments never actually close
on themselves, rather they continue to loop around endlessly in a somewhat chaotic
way). Away from the core of the structure the topology of the vortex filaments is more
complicated. The DNS of Gourlay et al. (2001) shows similar vortex line topology
for stratified wake vortices, that can be considered as an array of joined dipoles as
proposed by Spedding et al. (1996).

The horizontal vortex sheets observed below and above the core of the dipolar
structure are associated with high-shear regions in which the kinetic energy, entirely
contained in the quasi-horizontal motion, is dissipated. This idea of highly dissipative
horizontal vortex sheets that can connect the neighbouring structures was expressed
by Fincham et al. (1996) to explain the organization of patches of vertical vorticity
observed in stratified turbulence experiments. In their study they also observed that
90% of the kinetic energy is dissipated by these sheets of horizontal vorticity.

From these considerations, we define an effective Reynolds number, based on the
horizontal inertial forces and the vertical dissipative shearing:

Reeff =
inertial force

viscous force
=

U 2/Lh

νU/σ 2
=

σ 2

L2
h

Re

or

Reeff = α2Re (4.1)

where Re is the horizontal Reynolds number (Re = ULh/ν). Due to the strong
anisotropy of the flow, the effective Reynolds number, Reeff, is reduced by a factor α2

relative to the horizontal Reynolds number. The importance of this effective Reynolds
number will be discussed in § 6.

5. Comparison: experiment and quasi-horizontal model
5.1. Model initialized with experimental data

Here we compare some measured characteristics of the dipolar vortices to the result
of numerical simulations of the reduced equation (3.5). In order to have an exact
comparison between the experiments and the model, the numerical calculation is
initialized with the three-dimensional experimental data. The initial condition of the
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Figure 7. Comparison of the evolution of some characteristics of the dipolar structure (kinetic
energy, maximum vertical vorticity, translation velocity and distance between the two poles)
between experiment (black squares) and numerical simulation initialized with the first measured
vertical vorticity field (solid line). V = 0.68 l, δt = 4 s.

flow is defined by the measured vertical vorticity field soon after the collapse of the
turbulent patch, just after its reorganization into quasi-horizontal motion.

Results of this simulation are compared with the experimental data in figure 7.
The evolution of kinetic energy, maximum vertical vorticity, translation velocity and
distance between the two poles are all in very good agreement. The distance between
the poles shows a relatively linear growth with time, similar to that found by Flór &
van Heijst (1994).

Based on the principle of conservation of momentum and the entrainment of
ambient fluid Voropayev et al. (1991) derived an expression for the dipole characte-
ristics and their evolution soon after formation. For the experiment shown in figure 7,
at t = 750 s, their estimates yield L = 45 cm, U = 0.09 cm s−1 and σ = 45 cm. The
agreement is fairly good for the horizontal size and the translation velocity of the
dipole. However, their prediction exaggerates significantly the value of σ observed in
the present experiments (σ ∼ 12 cm). It should be noted that their definition of σ is
based on the vertical profile of horizontal velocity, which for the dipoles studied here,
tends to give values for σ about 30% larger than that from the profiles of vertical
vorticity. For the very large forcing considered here, the effect of mixing, which is not
considered in their analysis, cannot be neglected. In addition, during the formation
process, the vertical shear is initially very large, and tends to wash out the bottom and
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(a) (b)

Figure 8. (a) Isosurface of ωz (in light grey) and of the density perturbation ρ (in dark grey)
for 15% of their maximum value. (b) Isolines of the density perturbation in a vertical plane
through the dipolar vortex core. The positive part of ρ is in dark grey, while the negative part
is in white. Contour interval 
ρ =1.3 × 10−5g cm−3.

upper part of the structure leading to a thinner dipole. A detailed analysis of the effect
of vertical shear on a dipole can be found in Voropayev, Smirnov & Brandt (2001).

This agreement between the numerical simulation and the experiments shows
that, for the present flow conditions, the observed dipolar vortex structure can be
characterized as a stack of quasi-independent two-dimensional coherent vortices
vertically coupled by viscosity, as proposed for stratified turbulence by Lilly (1983).
An important factor in the model is its complete independence from the level of the
stratification. However, this model, which is suitable for describing the viscous decay
of any isolated structure, is valid only in the low-Froude-number hypothesis Frv � 1
and in the absence of internal gravity waves.

For an isolated decaying monopolar vortex, comparisons of full three-dimensional
numerical simulations of the Boussinesq equations with an analytical model, based
on an exact resolution of (3.5), performed by Beckers et al. (2001), shown that for
Frv � 1, (3.5) is sufficient to describe the evolution of the structure. In this regime, the
decay is also found to be independent of the stratification. However, for larger vertical
Froude number, Frv > 1, they observed departures from this model. These departures,
including vertical velocities associated with a recirculation, are second-order effects
(O(Fr2

v )) and remain of limited importance in the regime we investigate here.
In view of the close agreement between the experiments and the model, detailed

information, which cannot be easily measured during the experiments, such as
the three-dimensional fields of pressure and density fluctuations, can be obtained
respectively from the numerical resolution of (3.6) and (3.3). The density perturbation
field, ρ(x, y, z), associated with the dipolar structure is represented together with the
vertical vorticity in terms of an isosurface in figure 8. As can be seen in figure 8, the
upper part of the structure exhibits a weaker density than the ambient stratification
while the lower part exhibits a stronger density. The maxima of the deviations are
observed above and below the centre of each pole. This pinching of the isopycnals
above and below each pole has the effect of increasing the local value of the Brunt–
Väisälä frequency N by as much as 2 times on the centreplane. Correspondingly the
value of N at z = ±σ/

√
2 is significantly reduced. As z = ±σ/

√
2 also corresponds to

zones of maximum vertical shearing, we would expect to find the minimum Richardson
number here. The minimum Richardson number was found to be consistently larger
than 0.25 even for the earliest times measured, a result consistent with the findings of
Bonnier et al. (2000), suggesting that in the process of vortex formation, any critical
regions are quickly ‘diffused’ by the associated turbulence.
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Figure 9. Measured profile of density perturbation relative to undisturbed fluid through
the center of one pole (solid line) and obtained from the vertical vorticity field using the
cyclostrophic and hydrostatic assumptions (dashed line).

At early times, the available potential energy contained in the density perturbation
field represents less than 3% of the total kinetic energy of the structure. This potential
energy is released gradually during the decay of the structure and has the effect of
stretching the vertical vorticity as the pinched isopycnals return to their horizontal
rest state. Vortex stretching, which was reported and discussed by Beckers et al.
(2001), corresponds to a conversion of potential energy stored in the deformation
of the isopycnals into kinetic energy of the vortex. This process is associated with
a secondary circulation in which a radially inward flow takes place inside each
pole of the dipole. This process, which can affect the decay and the growth of the
vortex, cannot be described by the set of equations (3.1)–(3.4). Nevertheless, because
it remains a O(Fr2

v ) effect, this process does not significantly affect the decay of the
dipolar vortex in the regime we investigate.

A comparison between the density obtained from the vertical vorticity field and
that measured directly by a conductivity probe is shown in figure 9, where the profile
is measured through the centre of one pole. The good agreement confirms the validity
of the cyclostrophic balanced state model proposed by Bonnier et al. (2000) and
Beckers et al. (2001, 2002). These authors, along with Voropayev et al. (1991), have
made similar density profile measurements of late-time stratified vortices.

5.2. Three-dimensional extension of the Lamb–Chaplygin dipolar vortex

To investigate the role of the Reynolds number and the initial dipole thickness, and
to better understand the processes that govern the evolution of the dipole, numerical
simulations of the evolution of the collapsed structure were done. Here we describe a
simple model for a three-dimensional dipole that is consistent with the experimental
observations. Many sophisticated approaches to using classical flow solutions to help
characterize the evolution of real flows have been developed: see Turner (1964) for
the flow into an expanding spherical vortex and Voropayev et al. (1991) for flow
into an expanding planar dipole. Here, the flow solution is used only as an initial
condition for the numerical simulations and the approach is kept simple.

Flór & van Heijst (1994) and Flór et al. (1995) have shown that a planar dipole
generated by a turbulent injection can be described well by a theoretical model called
the Lamb–Chaplygin dipole. This model for a two-dimensional dipolar vortex with
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continuously distributed vorticity on a circular area was first described by Lamb
(1932) and later by Batchelor (1967). A similar, more general dipole solution was
formulated independently by Chaplygin in 1902, see Meleshko & van Heijst (1994)
and is referred to in this paper as the Lamb–Chaplygin dipole. Lamb and Chaplygin
proposed a localized solution of the two-dimensional Euler equations where

ωz =

{
λ2ψ ′, r � R0

0, r >R0.
(5.1)

λ is a constant, ψ ′ the streamfunction in the frame of reference moving with the
dipole and R0 the radius of the dipole. The Lamb–Chaplygin dipolar solution in the
frame moving with the dipole is given by:

ψ ′(r, θ) =




− 2UR0

γ J0(γ )
J1(λr) sin(θ), r � R0

U

(
R2

0

r
− r

)
sin(θ), r >R0,

(5.2)

with U the dipole’s translation speed, (r, θ) the cylindrical coordinates in the horizontal
plane (θ is measured from the dipole axis), and J0 and J1 the Bessel functions of zero
and first order. Continuity of the velocity at r = R0 requires λR0 = γ where γ =3.8317
is the first zero of J1.

To compare the measured horizontal distribution of vertical vorticity ωz to this
solution, we calculate the streamfunction ψ ′ for several different horizontal planes.
The streamfunction ψ in the laboratory frame is obtained by solving ∇2

hψ = −ωz.
We then obtain ψ ′(x, y, z) by applying the transformation ψ ′(x, y, z) =ψ(x, y, z) −
Ux(z)y + Uy(z)x, where Ux and Uy are the components of the dipole’s translation
velocity.

Figure 10 shows the horizontal distribution of ωz and the streamfunction ψ ′ in
two different horizontal slices of the laboratory-generated dipole and the associated
scatter plots ωz = f (ψ ′). On these plots the points collapse quite well onto a single
curve with two branches. The points clustered in the horizontal band with ωz = 0
correspond to the potential flow outside the dipole, while the others are associated
with the rotational flow inside the dipole. This behaviour indicates that the flow in
each level z is almost a stationary state of the two-dimensional Euler equation.

The curve ωz = f (ψ ′) shows a slightly nonlinear relationship, with a sinh-like profile.
A similar nonlinear profile was also observed in experiment and numerical simulation
(Couder & Basdevant 1986; Nguyen Duc & Sommeria 1988; Flór & van Heijst
1994; Beckers et al. 2002). Flór & van Heijst (1994) noticed that dipoles created by
the collapse of a turbulent jet always exhibit such a nonlinear (ω, ψ ′) relationship
whereas dipoles generated from a laminar injection exhibit a much more linear (ω, ψ ′)
relationship. Similar results were obtained by Beckers et al. (2002) who observed that
the deviation from the linear relationship increases with the Reynolds number. A
common result of these observations is that this nonlinear profile is associated with
a relatively weak linking of the dipole’s constituent vortices. For a dipole generated
by turbulent injection, the viscous entrainment of nearly irrotational fluid into the
dipole tends to increase the separation of the vortex centres and thus leads to a less
compact structure.

Although the (ω, ψ ′) relationship is not linear these curves can still be reasonably
well fitted to a linear function ωz = λ2ψ ′ at all z. The slope, λ2, obtained from a linear
least square fit of points having non-zero vorticity in figure 10 remains the same for the
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Figure 10. (a) Horizontal distribution of the vertical vorticity, ωz. (b) Streamfunction, ψ ′,
in the frame of reference translating with the planar dipole. (c) Scatter plot of the relation
ωz = f (ψ ′); z = + 3/4σ cm and z = 0 cm. The dipole is propagating to the left and up.

different z, λ2 = (8.9 ± 0.2) × 10−3. This estimation corresponds well with the value of
λ2 = (9.0 ± 0.1) × 10−3 obtained with the relation λ2 = (γ /R0)

2 for a Lamb–Chaplygin
dipole with a radius R0 equal to that measured from the contour plots in figure 10.
Moreover, the radius of the dipole remains the same along the tube of vertical
vorticity; only its strength changes (figure 3). We thus consider as a model for the initial
three dimensional dipole a vertical assembly of similar planar Lamb–Chaplygin di-
poles, with strengths vertically distributed according to a Gaussian curve, exp(−z2/σ 2).
Even without viscosity, this three-dimensional model is not stationary. Due to the
vertical variability of the self-advection, a deformation of the structure will occur.

According to the model developed above, the dipole is characterized by three
quantities: its radius R0, its translation velocity U and its vertical extent, σ . The
values of R0 and U are taken to be 1, as they are non-dimensional variables . The free
parameters are the horizontal Reynolds number, Re, and σ . So, given the Reynolds
number, the effective Reynolds number, defined by (4.1), is directly determined by
the choice of σ . For a specific case, Re= 1000 and σ =0.2, the evolution and the
three-dimensional structure of the flow obtained from the numerical simulation are
illustrated in figure 11. Good qualitative agreement with the experiments represented
in figure 2 can be seen.

When comparing results from the laboratory experiments and the numerical
simulations, it is important to account for the different time origins and initial
conditions. The simulations are initialized at time t0, with a collapsed structure that
undergoes an initial reorganization. In the experiments, t0 corresponds to the end of
the injection process. Typically, the collapse is mostly completed in about 15 buoyancy
periods or approximately 315 s, at which point the data acquisition is started. A time
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(a) (b)

(c) (d)

Figure 11. Isosurface of ωz inside the core for |ωz| = 15% of the maximum vertical vorticity
from the numerical simulation at t = 0, t = 5, t = 10, t =15 (Re= 1000, σ = 0.2). The vertical
axes have been stretched by factor 4 to enhance the visualization.

(a) (b)

Figure 12. Isosurfaces of enstrophy (dark grey) for 20% of the maximum and negative ωz

(light grey) for 15% of the minimum. Numerical simulation (a) and experiment (b).

scale can be defined from the speed and horizontal size of the measured structure in the
first volume acquired. Using this normalization, the non-dimensional computational
time units correspond to roughly 350 s each.

Figure 12 shows a comparison between the enstrophy fields of the simulated
and experimentally measured dipoles for approximately similar non-dimensional
times. In both cases two horizontal sheets of strong horizontal vorticity can be seen
sandwiching the dipole core; the holes, representing local minima in the enstrophy
field, correspond approximately to zero-velocity regions in the laboratory reference
frame and are located slightly in front and to the outside of the deformed cores of
the vertical vorticity structure.

6. Horizontal advection–vertical diffusion balance
The effect of the initial horizontal Reynolds number and effective Reynolds number

on the decay of the dipolar vortex is illustrated in figure 13. The decay of the total
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t .

kinetic energy is directly related to the effective Reynolds number. The two simulations
with the same Reeff = 10 exhibit exactly the same decay, yet they were initialized with
vastly different horizontal Reynolds numbers (500 and 2000). The energy decay is thus
governed by the effective Reynolds number, which is consistent with the experimental
observations showing that the kinetic energy is almost entirely dissipated through the
vertical gradients.

Moreover, as can be seen in figure 14 two different initial behaviours of the dipole
thickness are observed depending of the initial value of Reeff. For small initial Reeff

(thin dipole), the vertical length starts to grow, whereas for large initial effective
Reynolds number the vertical scale starts to decreases until it reaches its minimum
value and then increases monotonically with time. In the first case, diffusion is
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Figure 15. Evolution of the aspect ratio α as a function of Reeff, for numerical simulation
(solid line) with different initial horizontal Reynolds numbers of: curve 1, 350; 2, 500; and 3,
2000. From experiments: �, V = 0.60 l, δt = 3 s; �, V = 0.68 l, δt = 4 s; �, V = 0.54 l, δt = 3 s.

dominant over advection, the evolution is purely diffusive and the thickness grows
according to

√
t . This regime correspond to the regime previously observed and

described by Flór et al. (1995). In the second case, Reeff is initially large and the
dynamics is dominated by the horizontal advection. High-shear regions confine the
dipole, acting as boundaries between the moving dipole core and ambient fluid above
and below. As the dipole advances the lower and upper boundaries tend to be washed
away, thining the structure. This process is enhance by the ongoing self-induced
deformation which increases the importance of vertical shear. All this contributes to a
decrease of σ . During this process, the temporal effective Reynolds number decreases
until it reaches a critical value coinciding with the minimum value of σ . Thereafter
diffusion overwhelms advection and the vertical scale starts growing with

√
t .

Similar behaviour of σ was observed by Godoy-Diana, Chomaz & Billant (2003) for
initially tall dipoles and a mechanism of ‘viscous peel-off’ was proposed to explain the
evolution of the thickness of the structure. This model, also based on an advection–
vertical diffusion balance predicts that σ should decreases until it reaches a ‘viscous
scale’, δ = LhRe−1/2. The time needed for the vertical scale to reach δ, estimated from
figure 14, is Tc = 6.5. This estimate is in very good agreement with their model, which
predicts Tc = α0Re1/2Lh/U = 6.3 (using U =1, Lh = 1, Re = 500 and α0 = 0.28).

The two different evolutionary regimes of the dipolar structure observed in figure 4
are directly related to the value of the effective Reynolds number; this is illustrated
in figure 15 which shows the evolution of the aspect ratio of the structure as a
function of the time-dependent Reeff. The time evolution is from right to left. In
all cases we observe the two regimes. For early times, when Reeff is large compared
to unity, α decreases; this corresponds to the advective regime. This regime, which
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by their value at the transition and the time is scaled by the advective time scale at this
transition. The solid line is an exponential decay with e-folding time Rec

eff.

cannot be described by the usual diffusion model, persists until Reeff reaches the
critical value, Rec

eff, which corresponds to a balance between horizontal advection and
vertical diffusion. The critical value at which the transition occurs is independent of
the initial condition and confirms that for initially large Reeff, the aspect ratio of the
dipole decreases down to α ∼ Re−1/2 as predicted by Godoy-Diana et al. (2003). For
later times, the structure enters the diffusively dominated regime, and we observe the
inverse phenomena, α increases, while the effective Reynolds number remains almost
constant.

Since the only relevant parameter is the effective Reynolds number, soon after
the transition, the dipolar vortex should develop a self-similar regime. Scale U , L

and σ by their value at the transition, Uc, Lc and σ c, and define the dimensionless
advective time (t − t c)Uc/Lc where t c is the transition time. The temporal evolution
of the maximum value of the vertical vorticity and the translation velocity after
the transition are shown in figure 16. In both graphs the curves collapse fairly
well indicating a self-similar decay which is independent of the initial conditions. In
this regime, the evolution is compared with the ‘constant thickness’ model proposed
by Flór et al. (1995) (solid line in figure 16) which gives, on short time scales, a useful
approximation of the viscous decay of the dipolar vortex. According to this model,
the decrease of the maximum value of the vertical vorticity and of the translation
velocity occurs on a time scale τ ∼ ν−1σ which corresponds to a dimensionless decay
time Rec

eff. For larger times, the approximation of constant thickness is no longer
valid. A more complete model which accounts for the vertical expansion Flór et al.
(1995) using combined algebraic and exponential decay could then be used.

7. Conclusion
Experiments on the three-dimensional structure of a stratified vortex dipole were

performed at large scale and for moderate Reynolds numbers in the low-Froude-
number regime. These experiments were accomanied by corresponding numerical
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and theoretical investigations under the low-Froude-number hypothesis Frv � 1.
The novel measurement technique used, provided access to the three dimensional
structure of the vorticity field and permitted the assimilation of the data into the
numerical model. Such low-Froude-number coherent structures are described well
by a simple model based on the horizontal advection of the vertical vorticity (z-
dependent) where the different layers are coupled only by viscosity. Although the
dynamics are controlled by the horizontal velocity field, the diffusion is mainly in
the vertical direction. The experiments revealed the self-induced banana-like structure
of the vertical component of vorticity and the tendency of the vortex lines to form
closed loops in the dipole core. The quasi-three-dimensional model exhibited excellent
agreement with the experimental data when initialized with a measured vorticity field.
This agreement was good for both the time evolution of average basic quantities,
such as the energy and vertical vorticity, as well as for the evolution of the translation
velocity and the distance between the poles. However this model is not able to capture
O(Fr2

v ) effects such as the secondary recirculation that may influence the dynamic of
the structure as observed by Beckers et al. (2001) for the decay of a monopolar vortex.
Thus, even though if the basic mechanisms are captured by this model, full three-
dimensional simulation will be needed to investigate the initial regime Frv ∼ O(1).

The model also permitted the evaluation of additional quantities that were not ac-
cessible experimentally, such as the density and pressure fields corresponding to the ex-
perimental velocity data. Density measurements through one of the poles were in excel-
lent agreement with that predicted by the model. This good agreement led to the devel-
opment of a fully three-dimensional stratified Lamb–Chaplygin dipole model, which
was used as an initial condition, allowing the simulation of higher Reynolds number
dipoles. The observation that almost all of the energy dissipation is by vertical shearing
of the horizontal velocity field suggested the introduction of an effective Reynolds
number based on horizontal inertia and vertical diffusion. This effective Reynolds
number was shown to govern the overall decay of the dipole and to define two
regimes. If Reeff � 1 the evolution is purely diffusive while for large Reeff, the dipole
undergoes an advectively driven thinning process until Reeff ∼ O(1). Then, diffusion
becomes the dominant process and the evolution, which is independent of the initial
conditions, is predicted well by an exponential decay with a decay time given by Rec

eff.
Dipolar vortices occurring at geophysical scales, where the Reynolds numbers are

many orders of magnitude larger than those studied here, are believed to exhibit
similar dynamics. At these high Reynolds numbers, the molecular viscosity would
be replaced by an effective turbulent viscosity. Due to strong natural forcing and
interactions with other vortices (that can dramatically increase the vertical shearing)
these dipoles cannot be considered as freely decaying and it is expected that the shear
layers confining these geophysical structures would become unstable (as shown, the
density field perturbations associated with the dipolar structure produce minimum
stratification in the regions of maximum vertical shearing). Instability of these shear
layers will have the effect of locally increasing the effective turbulent eddy viscosity,
compensating for any increased shearing, hence restoring the advective–diffusive
balance. However, in geophysical flows, internal gravity waves cannot always be
neglected as in the present model and a description of their interactions with the
coherent structures would be useful to achieve a better understanding of these vortices
at geophysical scales.

These laboratory experiments would not have been possible without the support of
Dr Henri Didelle, Dr Dominique Renouard and Mr René Carcel.
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